
Objects, Types, and
Values
Chapter 3

Storage of Data

The “Hello, World!” program is boring.

To do tasks that are not boring, we need to be
able to store data.

We need somewhere in the computer’s
memory to place values we read from the user

Objects

An object is a region of memory with a type that
specifies what kinds of information can be
placed in it. p60

A named object is called a variable.

For example, character strings are put into
string variables and integers are put into int
variables.

A picture

int:
age:

This would represent an object of type int
named age containing the integer value 42.

42

Example Code

#include <iostream>
using std::cin;
using std::cout;
int main()
{

cout << “Please enter your first name (followed by
‘enter’):\n”;

string first_name;
cin >> first_name;
cout << “Hello, ” << first_name << “!\n”;
return 0;

}

What’s it do?

The first line of main is a message that prompts
the user for some input. It’s usually called a
prompt.

The next line defines a variable of type string
called first_name

The 3rd line reads from the keyboard and
stores the result in first_name.
The last line prints out the name in a message.

Definitions

The line: string first_name is a variable
definition.
It sets aside an area of memory for holding
strings of characters and gives it a name.

In general a definition of a variable introduces a
new name into a program and sets aside
memory for it.

See-in

cin >> first_name;
reads characters from the keyboard and stores
them in the variable first_name.
How does it know when to stop?

Repetition

We could have written the last line like this:
cout << “Hello”;
cout << first_name;
cout << “!\n”;
Needless repetition because it provides
opportunities for errors should be avoided.

Variables

“We can do nothing of interest with a computer
without storing data in memory” p62
The places in which we store data are called
objects.
To access an object we need a name.

A named object is called a variable and has a
specific type that determines what can be put
into the object and which operations can be
applied

More variables

The data items we put in our variables are
called values.
A statement that defines a variables is called a
definition.
A definition can and usually should provide an
initial value.

string name = “Annemarie”;
int number_of_steps = 39;

Variables 3

You can’t put the wrong type into a variable:
string name2 = 99;
int number_of_steps = “Annemarie”;

The compiler will check each variable and the
type of data you are attempting to store in
them.

Sample Types

int number_of_steps = 39; //int for integers
double flying_time = 3.5; //double for floating pt
char decimal_point = ‘.’; //char for 1 character
string name = “Kelly”; //string for char strings
bool tap_on = true; //bool for logical variables

Input and Type

The input operator >> (“get from”) is sensitive
to type; that is it reads according to the type of
variable you read into.

int main()
{

cout << “Please enter your first name and
age\n”;

string first_name; //string variable
int age; //integer variable
cin >> first_name; //read a string
cin >> age; //read an integer
cout << “Hello, ” << first_name << “ (age ” <<

age << “)\n”;
return 0;

}

More input and Types

If we type in Carlos 22, we get out
Hello, Carlos (age 22)
How does that work?

What if we type in 22 Carlos?

Operations and operators

In addition to specifying what values can be
stored in a variable, the type of a variable
determines what operations we can apply to it
and what they mean.

int count;
cin >> count;
string name;
cin >> name;

int c2 = count+2;

string s2=name +“Jr.”;

int c3 = count - 2;

string s3=name - “Jr”;

Memorize this. (no please don’t)
bool char int double string

assignment = = = = =

addition + +

concatenation +

subtraction - -

multiplication * *

division / /

remainder %

increment by 1 ++ ++

decrement by 1 -- --

increment by n += n += n

bool char int double string

add to end +=

decrement by n -= n -= n

multiply and assign *= n *= n

divide and assign /= n /= n

remainder and assign %= n

read from s into x s >> x s >> x s >> x s >> x s >> x

write x to s s << x s << x s << x s << x s << x

equals == == == == ==

not equals != != != != !=

greater than > > > > >

greater than or equal >= >= >= >= >=

less than < < < < <

less than or equal <= <= <= <= <=

Other operations

There are many floating point operations that
we do not have operators for.
For example, square root. We do have
functions that we can use and call to do these
operations.
String have fewer operators but many named
operations as we’ll see later.

String operators

+ for strings means concatenation.
Concatenation means to join two string.
For example:
string s1 = “Dave”;
string s2 = “McPherson”;
s1+s2 would be “DaveMcPherson”

int main()
{

cout << “Please enter two names\n”;
string first;
string second;
cin >> first >> second;
if (first == second)

cout << “that’s the same name twice\n”;
if (first < second)

cout << first << “ is alphabetically before “ << second
<< “\n”;

if (first > second)
cout << first << “ is alphabetically after “ << second

<< “\n”;
}

Assignment and initialization

int a = 3; //a starts out with value 3

a = 4; // a gets the value 4 (becomes 4)

int b = a; //b starts out with a copy of a’s value

b = a+5; //b gets the value a+5

a = a + 7; //a gets the value a+7

What’s going on there?

Take a look at that last one again.
Clearly, = does not mean equality.
= means assignment, that is, to place a new
value in a variable.
a = a + 7 means this:
1. Get the value of a; that’s integer 4.
2. Next, add 7 to that 4, yielding the integer 11.
3. Finally, put that 11 into a.

So, assignment and initialization

Two slides back we used “starts out with” and
“get” to distinguish between two similar, but
logically distinct operations.

Initialization (giving a variable its initial value)

Assignment (giving a variable a new value)

These operations are so similar, C++ uses the
same notation, =

How can you tell them apart?

I’m glad you asked.
You can tell the two apart by the type
specification (like int or string) that always
starts an initialization.
An assignment does not have that.
Initialization always finds the variable empty.
Assignment does not. Assignment has to
“clean up” or “empty” the memory before it uses
it.

An Example

int main()
{

string previous = “”; // line 1
string current; // line 2
while (cin >> current) { // line 3

if (previous == current) // line 4
cout << “repeated word: ” << current << “\n”;

previous = current;
}
return 0;

}

Explanation

Line 1: Initialization of previous to “not a word”
Line 2: current word
Line 3: read a stream of words
Line 4: check if word is the same as last

We’ll come to the while statement soon
enough.

Composite assignment operators

There are lots of shortcut notations in C++.
As you gain more experience give them a try.
For example:
int x = 0;
x++; //means to add 1 to x.
x += 1; //means to add 1 to x.
x = x + 1; //means to add 1 to x.
All three are the same meaning, but all are
written differently.

Names

We name our variables so that we can
remember them and refer to them from other
parts of a program. p74
In a C++ program, a name starts with a letter*
and contains only letters, digits and
underscores.

*They can also start with underscores, but don’t do this.

Examples

Good

x
number_of_elements
FourierTransform
z2
Polygon

Bad

2x
timetomarket
Start menu

NaMiNg

Names are case sensitive

int Main()
{

STRING s = “Goodbye, cruel world!”;
cOut << S << ‘\n’;
Return 0;

}

Keywords

C++ has 70 keywords.
Quiz: name them...no.

You can’t use keywords as names.
You can use other names, like string, but it’s
really not a good idea.

Choosing names

When you choose a name for your variables,
functions, types, etc., choose meaningful
names; that is choose names that will help
people understand your program. p76

It is difficult to understand programs that are
littered with easy to type names, e.g. k2, x1, y.

Don’t choose overly long names:
thisIsTheLongestNameThatICouldFitOnThisLin

Types and objects

The notion of type is central to C++
A type defines a set of possible values and a set of
operations (for an object).
An object is some memory that holds a value of a given
type.
A value is a set of bits in memory interpreted according to a
type.
A variable is a named object.
A declaration is a statement that gives a name to an object.
A definition is a declaration that sets aside memory for an
object.

Type safety

Use of uninitialized variables is a very common
unsafe type use.
An implementation is even allowed to give a
hardware error when the unitialized variable is
used.
Always initialize your variables!

Safe conversions

A safe conversion is one where the original value can be
retrieved from the converted value.
For example
char c = ‘x’;
int i1 = c;
int i2 = ‘x’;
i1 and i2 both get the value 120.
char c2 = i1;
cout << c << ‘ ‘ << i1 << ‘ ‘ << c2 << ‘\n’;
x 120 x
Safe because the conversion back from int to char retains
value for character

Other safe conversion

bool to char
bool to int
bool to double
char to int
char to double
int to double
All of these conversion “widen” the value, or at
least don’t lose precision or information.

Unsafe conversions

double to int
double to char
double to bool
int to char
These conversion “narrow” to lose information.
For example, doubles are stored usually in 8
bytes, but ints are only stored in 4.

